ABSTRACT
Frequency Synthesis in Wireless and Wireline Systems. (December 2010)
Didem Zeliha Türker, B.S., Sabanci University
Chair of Advisory Committee: Dr. Edgar Sánchez-Sinencio

First, a frequency synthesizer for IEEE 802.15.4 / ZigBee transceiver applications
that employs dynamic True Single Phase Clocking (TSPC) circuits in its frequency
dividers is presented and through the analysis and measurement results of this
synthesizer, the need for low power circuit techniques in frequency dividers is
discussed.

Next, Differential Cascode Voltage-Switch-Logic (DCVSL) based delay cells are
explored for implementing radio-frequency (RF) frequency dividers of low power
frequency synthesizers. DCVSL flip-flops offer small input and clock capacitance which
makes the power consumption of these circuits and their driving stages, very low. We
perform a delay analysis of DCVSL circuits and propose a closed-form delay model
that predicts the speed of DCVSL circuits with 8% worst case accuracy. The proposed
delay model also demonstrates that DCVSL circuits suffer from a large low-to-high
propagation delay \(\tau_{PLH} \) which limits their speed and results in asymmetrical output
waveforms. Our proposed enhanced DCVSL, which we call DCVSL-R, solves this
delay bottleneck, reducing \(\tau_{PLH} \) and achieving faster operation.

We implement two ring-oscillator-based voltage controlled oscillators (VCOs) in
0.13\(\mu \)m technology with DCVSL and DCVSL-R delay cells. In measurements, for the
same oscillation frequency (2.4GHz) and same phase noise (-113dBc/Hz at 10MHz),
DCVSL-R VCO consumes 30% less power than the DCVSL VCO. We also use the
proposed DCVSL-R circuit to implement the 2.4GHz dual-modulus prescaler of a low
power frequency synthesizer in 0.18\(\mu \)m technology. In measurements, the synthesizer
exhibits -135dBc/Hz phase noise at 10MHz offset and 58\(\mu \)s settling time with 8.3mW
power consumption, only 1.07mW of which is consumed by the dual modulus prescaler
and the buffer that drives it. When compared to other dual modulus prescalers with
similar division ratios and operating frequencies in literature, DCVSL-R dual modulus
prescaler demonstrates the lowest power consumption.

An all digital phase locked loop (ADPLL) that operates for a wide range of frequencies
to serve as a multi-protocol compatible PLL for microprocessor and serial
link applications, is presented. The proposed ADPLL is truly digital and is implemented
in a standard complementary metal-oxide-semiconductor (CMOS) technology
without any analog/RF or non-scalable components. It addresses the challenges that
come along with continuous wide range of operation such as stability and phase
frequency detection for a large frequency error range. A proposed multi-bit bidirectional
smart shifter serves as the digitally controlled oscillator (DCO) control and tunes the
DCO frequency by turning on/off inverter units in a large row/column matrix that
constitute the ring oscillator. The smart shifter block is completely digital, consisting
of standard cell logic gates, and is capable of tracking the row/column unit availability
of the DCO and shifting multiple bits per single update cycle. This enables
fast frequency acquisition times without necessitating dual loop filter or gear shifting
mechanisms.

The proposed ADPLL loop architecture does not employ costly, cumbersome
DACs or binary to thermometer converters and minimizes loop filter and DCO control complexity. The wide range ADPLL is implemented in 90nm digital CMOS technology and has a 9-bit TDC, the output of which is processed by a 10-bit digital loop filter and a 5-bit smart shifter. In measurements, the synthesizer achieves 2.5GHz-7.3GHz operation while consuming 10mW/GHz power, with an active area of 0.23 mm².