

3rd Austin Conference on Integrated Systems & Circuits 2008 An Invited Talk

Receivers Design:

Hesam Amir-Aslanzadeh Dr. Edgar Sánchez-Sinencio

Email: Hesam@ece.tamu.edu

Purpose:

- Discussing Receiver Design Decisions
 - Architectures
 - Technology
- Future Trends
 - Applications
 - Technology
 - Standards

Outline

- Introduction: Wireless Revolution?
- Architecture Selection
- Case Studies:
 - Radios Designed in AMSC
- Recent Trends
- Emerging Technologies
- Conclusion

Wireless Revolution?

- Moore's Law: number of transistors double every 2 years
- Cooper's Law: Spectrum efficiency doubles every 2 ½ years
- Wireless systems cost per delivery halves almost every 5 years

Wireless Standards

	Data Rate	Range	Cost
WiMax	15 Mb	5 km	\$8
3 G	14 Mb	10 km	\$6
WiFi	54 Mb	50-100 m	\$4
Bluetooth	700 kb	10m	\$1
ZigBee	250 kb	30m	\$4
UWB	~400Mb	5-10m	\$5
RFID	1-200kb	0.01-10m	\$0.04

Direct Conversion

- High level integration.
- No image rejection required.
- Less components, possible low power consumption
- DC offset.
- Flicker Noise

Low IF Receiver

- High level integration and possible low power design
- Flicker noise less significant in signal band
- DC offset can be easily removed
- Image rejection
- Folded-back interference

Bluetooth Receiver

6 Ph.D. Students, 1 Faculty

Chameleon Receiver

7 Ph.D. Students, 1 Faculty

Ultra-Wideband Receiver

4 Ph.D. Students, 2 Faculty

Radios Designed in AMSC (2001-2008)

ZigBee Transceiver

6 Ph.D. and 1 M.S. Students, 1 Faculty

MICS Transceiver

4 Ph.D. Students, 1 Faculty

Millimeter-wave

Dual standard Receiver

2 Ph.D. Students, 2 Faculty

Data rate/Range

Bluetooth Architectures

Direct-Conversion Receiver

- DC offset and flicker noise problem: 99% of signal power is within DC to 430kHz.
- A fast settling AGC may be required for GFSK demodulation.

Low-IF Receiver

- Greatly alleviated DC offset and Flicker noise problem.
- Relaxed image rejection requirement (~33 dB).

AMSC Bluetooth*

- ISM Band
- GFSK Signal
- Low-IF Quadrature
- Analog demodulator
 - No ADC, No AGC

Digital Bit

Streams

^{*} W. Sheng, B. Xia, A. Emira, C. Xin, A. Valero-López, S. Moon, E. Sánchez-Sinencio, "A 3-V, 0.35um CMOS Bluetooth Receiver IC" *IEEE Journal of Solid-State Circuits*, Vol. 38, No. 1, Jan. 2003

Chameleon (Bluetooth/WiFi) Applications

Standard comparison

	Bluetooth	Wi-Fi	
RF Frequency	2.4GHz	2.4GHz	
Sensitivity	-70dBm	-80dBm	
Maximum Signal	-20dBm	-4dBm	
Modulation	GFSK	CCK	
Data rate	1Mb/s	1, 2, 5.5, 11Mb/s	
Channel Bandwidth	1MHz	22MHz	

Chameleon* (Wifi /Bluetooth)

- Direct conversion allows for maximum block sharing
- Shared RF front-end and programmable baseband components
- Programmable channel selection filter with constant linearity
- AC coupled VGA with constant output offset
- On-chip time-interleaved pipeline ADC

Ultra Wideband

Communication

Ultra-Wideband Communication

- UWB Applications
 - Certified wireless USB
 - Hub and dongle adapter kits
 - Embedded laptop solutions
 - Real Time Location System
- Late take-off in 2007
 - 40,000 units shipped in 2007
 - 400,000,000^[1] predicted by 2013
 - Tremendous potential in handsets
 - Possibility of integration w/ Bluetooth

Wireless USB (Courtesy of Belkin)

RTLS System (Courtesy of MultiSpectral Solutions)

Pulse-based UWB

- Short burst of electromagnetic energy
 - Efficient battery use
 - Multi-path fading immunity
 - Secure
 - High Crest factor (PAR)
 - Not immune to ISI
- Applications
 - Radar/Imaging (1-100M Pulse/S)
 - Precision Asset localization
 - RFID
 - Communication (1-2G Pulse/S)

MB-OFDM UWB

- 7500 MHz divided into 14 bands of 528 MHz
- Only first Band Group is mandatory
- All-band receiver is challenging
 - Range of frequencies to be generated spans several gigahertz
 - Switch time between different bands within band group should be less than 9.5ns

AMSC UWB*

- Direct Conversion Receiver
- Full implementation from LNA to ADC
- Includes on-chip rejection of interference in the 5.2GHz U-NII band (WLAN)
- On-Chip Synthesizer generates the 11 required carriers

^{*} A. Valedes-Garcia, C. Mishra, F. Bahmani, J. Silva-Martinez, E. Sánchez-Sinencio, "An 11-Band 3-10 GHz Receiver in SiGe BiCMOS for Multiband OFDM UWB Communications" *IEEE Journal of Solid-State Circuits*, Vol. 42, No. 2, April 2007

Highlight of Experimental Results

- First 3-10GHz MB-OFDM UWB receiver.
- Features first 3-10GHz 11 band fast switching frequency synthesizer.
- First UWB receiver beyond 5GHz demonstrated in package

Maximum conversion gain	78-67 dB		
Noise figure across bands	5-10 dB		
IIP3 for band group 1 (worst case)	-9 dBm		
Baseband group delay variation	<0.6 nS		
Active area	5.6 mm ² including pads		
Current consumption	114 mA		
Supply voltage	2.5 V		
Package	QFN		
Technology	IBM 6HP 0.25um SiGe		

AMSC ZigBee Transceiver*

- Very low-power standard
- Direct Conversion / ISM Band
- OQPSK Signal w/ sine-wave shaping
- Analog Mo/Dem
 - Coherent
 - Non-Coherent

- Integer-N Synthesizer
- Switching-Type PA
 - Constant-envelope signal

^{*} *Under fabrication*; Team Members: Faisal Hussien, Hesam A. Aslanzadah, Sang Wook Park, Didem Turker, Rangakrishnan Srinivasan, Felix Fernandez, Mohamed Mobarak, Gang Bu, Edgar Sánchez-Sinencio

Recent Trends

in Wireless Technologies

Recent Trends

- Multi-Standard Transceivers
 - Multifunctional, Multi-band, Concurrent radios
- Adaptive Radios
 - Software-Defined Radio
- Baseband blocks
 - Reconfigurable
 - Programmable
 - Power-Adjustable
- High Integration
 - Antenna integration at millimeter-wave frequencies
- Wearable devices
 - Ultra low-power reliable RF/Analog
- MIMO
 - IEEE 802.11n, WiMax, ...

- Concept: Quantum tunneling
- Low-Cost MIM technology
- Phiar Inc. models f_T of 1.8 THz for MIIMIM transistors to be produced in 2008
- "Amorphous and compatible with a wide range of substrate materials"
 - Single chip CMOS 60-GHz transceiver possible w/ digital CMOS and integrated antenna + front-end in MIM

- Concept: Green Wireless
- No Battery, No wire
- Building/Home/Industrial Automation
- Radio Module
 - Energy Scavenging: 50uW
 - Range: 300m (free field) / 30m(Building)
 - 868MHz (license free) / 315MHz (less crowded)
 - Data rate: 125kbps
- How?
 - Avoid over-crowded ISM band (2.4GHz)
 - ASK / 1% duty cycle
 - Multiple short telegrams (1ms) w/ checksum

13500 addressable

luminaries and 4500 blinds

- Concept: Artificial Vision
- Using
 - Video camera
 - Image processor + transmitter
 - Self-powered wireless receiver
 - Energy Scavenging
 - Receiving Processed Video Data
 - Ultra-low power
 - MICS unlicensed frequency (400 MHz)
- Second Sight

Pictures Courtesy of **Second Sight** and

Intelligent Medical Implants

- (Argus II) 16 Electrode Device
- Intelligent Medical Implants AG
 - 50 Electrode Device

- Wireless HD (High Definition)
- Three contenders:
 - UWB (MBOA)
 - IEEE 802.11n
 - 60 GHz license-free waveband

	Available Spectrum [GHz]	Channel BW [MHz]	P _{max} [dBm]	Data rate [Mbps] Typ./Max.
UWB	1.5 (1 BG)	520	-4	200/480
IEEE 802.11n	0.67	40	22	74/248
60 GHz	7	2500	39	4000/25000

Medical Implant Communications Service*

- Concept: WearableCommunication device
- \$40B Market by 2011
- Implantable Medical Devices (IMD)
 - Heart diseases
 - Neurological disorders, ...
- 402-405MHz band

Possible scenario where patient conditions can be addressed remotely in real time using both implanted and wearable devices

^{*} *Under Tape-out;* Team: Félix O. Fernández-Rodríguez, Mohamed S. Mobarak, Mohammed M. Abdul-Latif, Jincheng Li, Kwisung Yoo, Edgar Sánchez-Sinencio

Architecture:

and relaxed receiver design)

Measured and simulated return loss for stacked implantable planar inverted-F antenna implanted into different biological tissue

frequency, MHz

350

AMSC MM-wave Receiver*

- Project Goals
 - Design/Implementation of a dual band receiver for the ISM(24GHz) and LDMS(31GHz) bands
 - The receiver should comply with IEEE802.16 standard
- MM-wave Dual Band receiver
 - The RF front-end is reused
 - Sub-harmonic mixing to reduce LO frequency
 - Band selection is preformed at IF

Conclusion

- Wireless applications in all areas of our lives
 - Medical, Environmental, Communication, House Automation, Security, ...
- Different architectures for varying applications

Cartoons courtesy of The Economist (by Bell Mellor)

Thank You

Q&A